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Abstract 

Reverberation is an audio effect used in music production affecting the audio spectrum, as 

well as the timbre, of music. Technical ear training concerning the ways that reverberation 

works on music samples is important, since in order to achieve the desired texture sound 

engineers need to be able to perceive subtle audio changes. However, “dry” recordings, i.e. 

those that lack reverberation, are not universally available for music production students for 

the purposes of practice. In this paper, we propose a deep learning-based music 

dereverberation method to generate de-reverbed music samples for technical ear training in 

music production education. The experiment results show that based on various objective 

evaluation metrics, the proposed method can effectively realize dereverberation compared to 

other neural network-based methods.  

 

Key words 

(de)reverberation, audio spectrum, timbre, texture, technical ear training, music production 

 

 

 

 



3 
 

Introduction 

Music production involves several workflow stages in the form of recording, mixing and 

mastering (Reiss et al., 2019). Recording typically refers to the technique of using 

microphones to collect the sounds of instruments, vocals, etc. to store into a media format. 

Mixing concerns the balance of individual musical tracks in terms of a series of audio 

features, including timbre and special location, while mastering deals with the final polish to 

the mix before distribution. During the music production process, audio effects, defined as 

“the controlled transformation of a sound typically based on some control parameters” 

(Wilmering et al., 2020, p. 791), are crucial tools for forming music texture. According to 

Wilmering et al. (2013), audio effects can be classified by their perceptual attributes as 

loudness, duration and rhythm, pitch and harmony, space, and timbre or quality. The 

“loudness” group can also contain audio effects (compressors, for example, possesses 

parameters including thresholds, attack time, release time, and make-up), while the “space” 

group includes reverberation, where pre-delay, reverb time, and wet constitute some of the 

more familiar parameters. 

Reverberation is an audio effect that is widely used in music production applications. It 

affects the timbre of music and influences the perception of sound space (Zölzer, 2011). In 

this case, applying reverberation appropriately is essential in terms of creating the appropriate 

timbral and spatial attributes. However, adding reverberation is about tuning a series of 



4 
 

parameters in order to control the audio transformation. Utilizing reverberation as a means of 

reaching the ideal perceptual target requires critical listening during the music production 

process, which means that sound engineers are required to make decisions on the setting of 

reverberation parameters based on their perceptual judgements. These perceptual judgements 

cover being aware of the indistinct musical discrepancies that exist when the parameters of 

audio effects are modified. In this respect, training in recognizing these almost unnoticeable 

changes is crucial for sound engineers. Consequently, the ability to understand how 

reverberation works on the perception of audio relies on a high level of technical ear training. 

 

Technical ear training and reverberation 

In traditional music education, ear training is a necessary skill for music composition and 

performance. In the field of music production, technical ear training is vital for work with 

audio signals through an ability to discern audio features. Corey & Benson proposed that 

technical ear training is a type of “perceptual learning focused on the timbral, dynamics and 

spatial attributes of sound” (2016, p. 5), and as such is an integral element of music 

production education. 

Music production refers to the application of a series of technical tools to produce music. 

In addition to possessing a deep understanding of the theoretical background of sound 

production, sound engineers also need to be perceptually aware of music. In order to combine 
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the scientific and artistic contexts, critical listening skills, based on the subjective decisions of 

sound engineers in response to what they hear, can serve as a bridge linking technical 

knowledge and musical aesthetics. Specifically, the operations involved in music production, 

including balancing the mix and adding audio effects, rely heavily on the ability to apply 

listening skills to achieve the targeted texture by tuning a series of parameters on audio 

software and hardware devices. A person without the necessary level of technical ear training 

is not capable of differentiating the subtle details of sound. For example, hearing the 

differences between quicker and slower attack times in a compressor as a precursor to making 

a decision about the most suitable parameter is acritical listening skill frequently called upon 

in music production. The ability to make judgements based on perceptual differences and 

translate these into technical modifications as they relate to audio signals, thereby attaining 

the required music production goals, is thus a requisite for every sound engineer. In this sense, 

the practice of acquiring critical listening skills through technical ear training is an inevitable 

and vital attribute.  

1.1 Digital reverberation 

With the introduction of digital technology has come the digitisation of audio effects for 

contemporary music production. Digital Audio Effects (DAFx) are transformations that blend 

audio signals, the modifications being conducted through a series of control parameters 

(Chourdakis & Reiss, 2017). Reverberation refers to the reflections of the delayed and 
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attenuated copies of a direct sound (Zölzer, 2011); digital reverberation, as one of the DAFx, 

is a room acoustics modelling technique in which the technology is used to mimic those 

impulse responses. The responses are themselves divided into the direct sound, early 

reflections, and late reflections. The direct sound is the original sound triggered in the room, 

the reverberation occurring when the duplicates of the direct sound form as reflections.  

Defined by the directivity of the original sound and the physical properties of the surfaces, 

early reflections occur immediately after the sound event, while late reflections (perceived as 

decaying sound) are actually closely related to echoes. Accordingly, by mimicking the 

impulse responses in the room, digital reverberation, as adopted in music production, is able 

to bring the modifications of spaciousness, depth, and distances to the music, in the process 

creating different “environments”.  

Technical ear training can be helpful for music production students as a means of 

cultivating the ability to identify the changes brought about by reverberation. The learning 

materials for this ear training demand an ample number of music samples with reverberation 

effects (wet versions) and their corresponding dry recordings. However, it is unusual for the 

music production industry to release wet and dry version recordings at the same time 

(Martínez-Ramírez, 2022). Moreover, the recordings that are available are produced with 

added reverberation, which has led to a lack of (public) dry recordings. The result from the 

students’ point of view is that merely listening to the reverbed version of a piece of music 
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will not enable them to distinguish between, and pass judgement on, how reverberation works 

and what kind of reverberation suits a particular style of music. For instance, the amount and 

type of reverberation added to Baroque and Romantic pieces of music are likely to be very 

different, partly because of the sonic environments and reflecting surfaces in architectural 

buildings from these two very different historical eras. If the only accessible ear training 

materials are produced music, students will have no idea how to properly add reverberation 

after recording Baroque music, since they are unable to perceive the distance between 

un-reverbed Baroque recordings and the corresponding wet versions. Conversely, for ethnic 

music and instruments, dry and clean recordings for music production are more difficult to 

obtain compared to wet and coloured versions, leading to a lack of familiarity with the 

un-reverbed textures of individual instruments. The combination of the types of requirements 

required for reverbed and un-reverbed audio samples and the challenges of finding ways to 

remove reverberation effects in music in order to expand the number of learning materials for 

technical ear training consequently provided the impetus for the deep learning methods 

introduced within the design of neural networks outlined in this research project.   

Existing deep learning methods 

In recent years, neural networks have started to be introduced into audio applications. 

Mimilakis et al. (2016) utilized deep neural networks and the short-time Fourier transform 

(STFT) for the purposes of predicting a coefficient of dynamic range compression in music 
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mastering applications, while the dilated residual network (DRN) (Grachten, 2018) and the 

convolutional neural network (CNN) (Ramírez & Reiss, 2018) have been applied to 

equalization in audio production. Oord et al. (2016) and Jang et al. (2021) proposed 

‘WaveNet’ and ‘UnivNet’, respectively, for generating raw audio from text. However, the 

generative adversarial network (GAN) (Goodfellow et.al., 2020) has found the most favor 

among researchers in the field of audio application. Su et al. (2020) introduced ‘HiFi-GAN’, 

which combines ‘WaveNet’ and GAN for speech application, while Yamamoto et al. (2020) 

designed ‘Parallel WaveGAN’ for text-to-speech via the adoption of ‘WaveNet’ and a 

multi-resolution spectrogram. AlBadawy et al. (2022) proposed a neural vocoder which 

converts the spectral representations of audio signals into the generation of high-fidelity 

waveforms in real time. In an exception to the speech genre, GAN has also been utilized to 

inverse the reverberation caused by the car environment (Pepe et al., 2020), while Kumar et 

al. (2019) introduced ‘MelGAN’ for generating waveforms, including a synthesis of speech 

and music. 

However, music production education in terms of technical ear training has been ignored 

by existing neural networks. The focus of this paper is on music dereverberation for the 

purposes of expanding the amount of technical ear training materials, based on the 

pre-existing condition that the construction of neural networks for music dereverberation can 

be applied to the same deep learning methods used in speech. Since the deep learning training 
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process is closely related to the spectrogram of audio materials, the differences between the 

frequency content of speech (used here to refer to the “standard” means of human vocal 

communication based around a narrow spectrum range and less complexity in terms of 

resonance compared to an individual’s singing voice) and music deserve to be highlighted. 

However, the presence of important differences between speech and music brings its own set 

of difficulties in terms of designing deep neural networks for music dereverberation. 

Additionally, some of the difficulties associated with dereverberation also lie within unknown 

acoustic environments and moving sources, both of which involve time-varying reverberation 

effects (Nercessian & Lukin, 2019). 

As a result, we propose a GAN-based model with a ‘UNet’ (Ronneberger et.al., 2015) to 

achieve high-quality music dereverberation. First, the reverbed music samples are converted 

to full-band Mel spectrograms (Stevens et al., 1937) as input to gain frequency information. 

Then, a multi-scale ‘UNet’-based architecture is adopted to generate non-reverb Mel 

spectrograms. Finally, a GAN-based vocoder (containing a generator with a series of 

transposed convolutions that produce input-sized waveforms and a multi-period waveform 

discriminator to grasp both spectral and temporal domain features) is designed to synthesize 

fine-grained waveforms as the output.    

Proposed method  

Due to high temporal resolution and the dependencies of audio data, modeling raw audio is 
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particularly challenging. Most current methods therefore adopt an indirect approach through 

the modeling of a lower-resolution representation (Kumar et al., 2019) in order to reconstruct 

high-resolution audio. Inspired by ‘UnivNet’ (Jang et al., 2021) and ‘U-Net’ (Ronneberger et 

al., 2015), the overall architecture presented here contains two parts: a ‘UNet’-based 

de-reverberator and a GAN-based neural vocoder, which contains a generator and a 

discriminator. The model ‘learns’ from paired examples using mono reverbed and dry audio 

samples. The block diagram of the proposed model is displayed in Figure 1. 

 

Conv2D Conv2D
Max

Pool

Input

Reverbed mel spectrograms

De-reverberator

Conv1D
Transposed 

Conv

Conv1D
Residual

Stack
Conv1D

De-reverb mel 

spectrograms

GAU Conv1D STFT

MRSD

Generator Discriminator

Waveforms

 

Figure 1 Block diagram of the proposed model 

1.1 Architecture 

‘UNet’ is widely used for image-to-image segmentation tasks (Ronneberger et al., 2015), 

dereverberation tasks (Ernst et al., 2018; Wang & Wang, 2020), and audio source separation 

tasks (Stoller et al., 2018). In this paper, we modify the ‘UNet’ structure for music 

dereverberation tasks; specifically, the architecture is a symmetric encoder-decoder network 

with skip connections which run on each encoder block and its mirror image between decoder 
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blocks. As for the input data, we transfer the waveform to a Mel spectrogram rather than an 

STFT to feed into the neural networks, since an STFT contains more data points and a Mel 

spectrogram corresponds to human perceptions of sound, both of which facilitate the 

generation of de-reverbed music. Compared to using raw audio waveforms, a Mel 

spectrogram is easier to model and retains enough information to convert back to audio 

(Kumar et al., 2019). All waveforms were resampled to 22.5kHz using an STFT with 1024 

FFT components, 1024 sample Hann window lengths, and 0-12kHz Mel spectrograms with 

80 bands. Input signals were normalized using the mean and variance of the entire training set. 

The final output of the de-reverberator is the same size as the input in order to predict the 

de-reverberated Mel spectrogram. 

Directly applying a ‘UNet’-similar image-to-image architecture is hard to keep aligned 

with human perceptions. In this case, GAN-based neural vocoders are successfully applied to 

audio reconstruction tasks. Among them, ‘UnivNet’, one of the state-of-the-art neural 

vocoders, absorbed the advantages of various vocoders and used full band Mel spectrograms 

to obtain good speech reconstruction results. Consequently, this research adopted ‘UnivNet’ 

as the neural vocoder to conduct the music dereverberation tasks. The structure of the 

generator is the same as ‘MelGAN’, which used a background noise as the input and 

predicted the dry Mel spectrogram generated by the de-reverberator as the condition. 

Additionally, the location-variable convolution (LVC) and a gated activation unit (GAU) 
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were added and a multi-resolution spectrogram discriminator (MRSD) (Jang et al., 2021), 

which employs a multi-spectrogram and a multi-period waveform discriminator to 

differentiate dry recordings and generate audio samples, adopted. The converted multiple 

spectrograms contain various temporal and spectral resolutions, while the multi-period 

waveform enhances adversarial modeling in the temporal domain.  

1.2 Training losses 

For the de-reverberator, the mean square error (MSE) loss was used, while for the neural 

vocoder, multi-resolution STFT loss (Yamamoto et al., 2020) as an auxiliary loss Laux, and the 

commonly used least-squares GAN as the objective functions, were applied. The auxiliary loss 

Laux combines the log STFT magnitude loss Lmag and spectral convergence loss Lsc. To improve 

the results, we added the MSE loss to the neural vocoder as another regularization term in order 

to compare the differences between the de-reverberated audio samples and the dry audio 

samples. All loss functions were defined as follows:  

 

  

,  
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Experiments 

1.1 Datasets 

The dry audio samples were downloaded from the Chinese Bamboo Flute (CBF) dataset 

(Wang et al., 2019) and ‘The “Mixing Secrets” Free Multitrack Download Library’. The CBF 

dataset is a collection of 20 dry recordings of four Chinese bamboo flute pieces. As for the 

‘Mixing Secrets’ dataset, in order to make sure that the audio samples contained more 

sustainable signals instead of silence as a means of facilitating the training process, multitrack 

excerpts, as opposed to the full multitrack, were used. Within the excerpt multitrack, we 

chose pop music and the dry recordings of songs from the multitrack, listening to every 

sample carefully in order to filter out the tracks that lacked continuous content, e.g., silence 

over three seconds, along with low-quality audio samples that included obvious artificial 

audio effects, such as pitch modification and lower clarity or breathing noise. The music 

samples were then cropped into blocks of three seconds each and the selected data separated 

into a training set consisting of 2400 audio samples and a testing set containing 600 randomly 

assigned audio pieces. Reverberation was added to the dry recordings via ‘Pedalboard’, a 

Python library containing the functionality of adding a series of audio effects. The built-in 

reverberation in ‘Pedalboard’, with parameters of a room size setting at 0.25, was adopted in 

order to make paired reverberated audio samples. 
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1.2 Evaluation metrics  

In order to evaluate the performance of different models for dereverberation tasks, three 

objective metrics (Frequency-Weighted Segmental Signal-to-Noise Ratio (FWSegSNR), 

Log-Likelihood Ratio (LLR), and Signal to Distortion Ratio (SDR)) were employed. 

FWSegSNR is widely used for evaluating dereverberation performance (Kinoshita et al., 

2016), defined as the average SNR ratio within a certain frequency band, the quality 

increasing with the value. LLR (Hu & Loizou, 2007) is also a conventional metric based on 

the LPC spectrum; suitable for the evaluation of reverberation effects, whereby those with 

smaller values are regarded as being of a better quality. SDR (Févotte et al., 2005) is a 

comprehensive index used to measure the sound quality of audio sources; the larger the value, 

the better the performance.   

Results 

The models ‘MelGAN’, ‘Unet+MelGAN’ and ‘Unet+UnivNet-c32’ were prepared for 

comparison. Since the original ‘MelGAN’ and ‘UnivNet’ act as neural vocoders, aimed at 

converting the Mel spectrograms into waveforms rather than dereverberation tasks, we added 

a cascade ‘UNet’ before them in order to realize the dereverberation. The cascade ‘UNet’ 

module took the Mel spectrogram of the reverbed audio as input to predict the dry Mel 

spectrogram. At the same time, we used ‘MelGAN’ to undertake the dereverberation tasks 

directly; this involved taking the Mel spectrogram of the reverbed sample as the input and 
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predicting the dry audio waveforms directly. All models were based on the official 

implementations and the relevant hyper-parameters following the reference configurations of 

each one. To ensure stable sound quality, the consumption times were calculated on the same 

platform and all deep learning-based models were trained on NVIDIA RTX3090 GPUs until 

the loss tended to stabilize. The proposed model was trained with a batch size of 32 and an 

AdamW optimizer (Loshchilov & Hutter, 2018), with β1 = 0.5, β2 = 0.9 and a 1e-4 learning 

rate.  

The results of the objective comparisons are summarized in Table 1. They show that 

using ‘MelGAN’ to generate de-reverbered audio samples directly failed to obtain ideal 

results, although it was the fastest model. By comparison, the neural network-based methods 

using ‘UNet’ cascaded resulted in a similar performance, illustrating that an indirect model is 

a requisite. The proposed method reaches the highest performance among the compared 

models in all objective metrics, except for speed, which can be tolerated in the real scenarios. 

Overall, the results demonstrate that the proposed method can realize high-quality music 

dereverberation while almost staying in real time. 

 

Table 1 Comparisons between different methods 

Model Name FWSegSNR LLR SDR Speed 

‘MelGAN’ 6.57 1.03 7.80 177.51 
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‘Unet + 

MelGAN’ 

9.09 0.51 9.17 142.86 

‘Unet + UnivNet’ 10.58 0.44 9.14 118.11 

Proposed Method 12.31 0.29 9.67 98.04 

Note. The speed is calculated based on consumption time relative to real time. 

 

Conclusions 

In music production education, technical ear training is ineluctable when comparing 

un-reverbed and reverbed music. Moreover, the lack of un-reverbed samples has resulted in 

the obstacle of music production students failing to understand comprehensively how 

reverberation works. In order to tackle this problem, while simultaneously expanding 

un-reverbed music learning materials, this paper has proposed a GAN-based model to 

generate real time and high quality dereverberation music. The results of the different 

evaluation metrics indicate that our method is more capable of realizing music 

dereverberation compared to other neural network-based methods. Additionally, this 

implementation can be extended to other audio effects, such as delay, in the process exploring 

audio transformations as they pertain to technical ear training. Future explorations will 

include more universal, reality-sited dereverberation models based on unparalleled data, 

together with the extension of the applications to other audio effects in order to facilitate 



17 
 

technical ear training within music production education. 
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